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The vertical oscillation of a partially submerged body produces a surface wave that 
carries energy away from the body. The amplitude of this wave, when surface- 
tension effects are not negligible, depends on the conditions applied a t  the line of 
contact between the body and the free surface of the fluid. An edge condition that 
includes both dynamic variation of the contact angle and contact-angle hysteresis is 
used in this paper ; the condition implies a dissipation of energy at  the contact line. 
The amplitude of the wave and the amount of energy dissipated are calculated for 
a horizontal circular cylinder and for a simple source-and-plate model. This model is 
shown to be an adequate representation for the qualitative description of heaving 
motions and to simplify the calculations considerably. The effects of varying the 
relative importance of surface tension and gravity, the dynamic behaviour of the 
contact angle, and the amount of hysteresis, are calculated for the source-and-plate 
model. 

1. Introduction 
The heaving motion of a partially immersed body displaces the fluid surrounding 

it. Waves are thereby generated on the free surface of the fluid which carry energy 
away from the body, resulting in the decay of a free motion of the body or requiring 
an input of energy to sustain a forced motion. This problem has been the topic of 
many studies, but for gravity waves only. The case of a horizontal circular cylinder 
with its axis in the free surface was solved by Ursell (1949) and the heaving motion 
of a vertical cylinder has been studied by Yeung (1981). Little attention has so far 
been given to the modifying effects of capillarity, since the main applicat,ion has been 
to ship motions and capillarity is quite unimportant in such cases. However, on the 
scale of laboratory experiments it may not always be justifiable to neglect surface 
tension and it is of some interest to determine the radiation of energy from a heaving 
body by capillary-gravity waves. 

The presence of surface tension adds a term to the dynamic boundary condition at 
the free surface that expresses the normal stress balance there. For propagating 
waves in regions where there are no boundaries that cross the free surface, the sole 
effect of surface tension is to change the dispersion relation, a t  least €or small- 
amplitude waves. When boundaries that intersect the free surface are present, it is 
necessary, in order to close the formulation of the problem, to impose a condition at  
the line of contact between the free surface and the boundary. The choice of an 
appropriate condition is not immediately apparent, yet different conditions may 
produce dramatically different motions. It is important to include in the edge 
condition terms that model two phenomena that are known to characterize contact 
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angles a t  moving contact lines. The first of them is known as contact-angle 
hysteresis. A range of static contact angles is possible and motion of the contact line 
only occurs when the angle is sufficiently large or sufficiently small, depending on the 
direction of motion of the contact line. The second phenomenon is dynamic contact- 
angle variation; when the contact line is moving the contact angle varies with its 
velocity. An important feat'ure of a model that incorporates these effects is that  
energy can be dissipated a t  the contact line; this dissipation is the result of 
microscale physical processes taking place in the vicinity of the contact line whose 
effect on macroscale phenomena is reflected in the contact-angle behaviour. There is 
no dissipation in the special cases of a fixed contact line and of a fixed contact 
angle. 

A model edge condition permitting realistic contact-angle behaviour has been used 
in some previous investigations. The motion of the contact line on a vertically 
oscillating plate has been considered by Young and Davis (1987), in a parameter 
range for which the motion of the contact line could be uncoupled from the fluid 
motion. A different parameter range for the same system was examined by Hocking 
(1987 b)  and the radiated waves were determined. I n  this problem the edge condition 
is the sole cause of the fluid motion; viscous effects do not appear a t  leading order 
and fluid is not displaced by the plate. If, however, the plate is replaced by a body 
with a non-zero immersed volume, both the displacement of the fluid by the body 
and the edge condition will contribute to the generation of surface waves. It is then 
natural to enquire into the relative importance of these two causes of the radiation 
of energy away from the body. The amount of energy dissipated may be reduced 
substantially by dissipation a t  the contact line ; for the vertically oscillating plate, 
such dissipation can account for as much as 90% of the energy input. 

An edge condition that includes contact-angle hysteresis introduces an element of 
nonlinearity into the otherwise linear problem of small-amplitude waves. It is 
helpful, therefore, to simplify the problem as much as possible, while retaining the 
main features of the motion. It does not seem likely that the shape of the immersed 
portion of the body will of great significance. The width of the body a t  the waterline 
is important, however, since this controls the volume of fluid displaced during the 
heaving motion. A simplification that includes both displacement and edge effects is 
afforded by replacing the body by a vertical plate and a submerged oscillatory 
source. Then the plate induces waves through the edge condition but not by 
displacing fluid, whereas the opposite is true for the source. The strength of the 
source can be adjusted to give the same displacement of fluid as a body of given 
width, and varying the depth of the source will model a one-parameter family of 
body shapes. We consider first the waves produced by a body whose submerged 
cross-section is a semicircle and then the source-and-plate model, both without 
hysteresis. Comparison of the two sets of results provides some evidence of the value 
of the model. The solution for the source and plate is obtained with contact-angle 
hysteresis included. I n  all cases, the main quantities of interest are the amplitudes 
of the radiated waves and the proportions of the energy input that are radiated and 
dissipated. 

Only two-dimensional motions are considered, so the radiated waves are plane. It 
is also assumed that the body surface is vertical where it intersects the free surface 
and that the static contact angle is 90" to  ensure a flat interface in equilibrium. The 
amplitude of the motion is assumed to be sufficiently small for a linearized solution 
to be valid. In  order that hysteresis effects may be included with small-amplitude 
waves present, it is necessary to  restrict the static range of contact angles to be small 
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also. For a fixed hysteresis range, the contact line would remain fixed throughout the 
motion of the wave amplitude were small enough. The properties of capillary-gravity 
waves with fixed edges were examined by Benjamin & Scott (1979) and by Graham. 
Eagle (1984), who initiated the recent study of capillary-gravity waves in the 
presence of boundaries. Evans (1968) had earlier considered the reflection of 
capillary-gravity waves by a barrier and the radiation of waves from a partially 
submerged cylinder. He recognized the importance of the edge condition but 
assumed that the slope of the free surface a t  the edge had a harmonic oscillation with 
a prescribed amplitude. He made no attempt to  relate this amplitude with the wave 
motion, although it clearly cannot be chosen independently, and his solution 
therefore contains an arbitrary parameter. Rhodes-Robinson (1971) made a similar 
assumption in his treatment of the waves produced by a vertical wavemaker moving 
horizontally. 

I n  addition to the dissipation resulting from the edge condition there is also a loss 
of energy because of viscous stresses. The relative importance of these two damping 
mechanisms is discussed in Hocking (1987 a )  for a standing-wave problem, in which 
the edge condition is incorporated. The largest viscous effect comes from the 
oscillatory Stokes layer on the body and has a magnitude proportional to Re-; (Re 
is the Reynolds number). This viscous correction is not included in the present work, 
in which viscosity is ignored throughout. 

2. Formulation 
With the x-axis horizontal and the y-axis along the upward vertical from an 

origin in the free surface, the mean position of the submerged portion of the body can 
be defined by 

y = -D(x), (2.1) 

with D an even function of x, D(b) = 0 and D'(b) = co. The body is forced to move 
vertically with velocity V sin dt. All lengths are scaled by l/&, where 2n/E is the 
wavelength of surface waves of angular frequency u, so that 

where g is gravity, y surface tension and p the density of the fluid. Velocities are 
scaled by V ,  and u = (u, w), p and t are the non-dimensional fluid velocity, the 
dynamic pressure and the time respectively. The equations for the linearized fluid 
motion can then be written in the form 

au 
- at = -gradp, div u = 0, 

subject to the conditions 
lul+O as y+-co, 

n . (u-s indj )  = 0 on y = -D(x), 1x1 < b, (2.5) 

3- - v ,  y-K-=p 8% on y = O ,  1x1) b ,  
at ax2 

where n is the outward normal to the body surface, j is the unit vector in the y- 
direction, 7 is the free-surface elevation, and 
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Since D(x)  is even, we need only consider the region x 2 0. The edge condition a t  
x = b has the form 

(2.8) 
-- a~ sinut = c 0 at 

J 
where h and a are constants determining the dynamic variation of the contact angle 
and the amount of hysteresis respectively. For simplicity, the advancing and 
retreating values have been chosen symmetrically. 

The energy balance over one period and for unit span in the half-space x > 0 can 
be written in the form 

Es=ER+E,, 

where the suffixes refer to the supplied, radiated and dissipated energies. Following 
the evaluation given in Hocking (1987 b) and omitting contributions to the energy flux 
that have zero mean over a period, we can express these energies in the forms 

Es = J:v[ -K 

ED = rn K(!! - sin ut) $ dt, 

(2.10) 

(2.11) 

ER = $.(1+3K) IC12, (2.12) 

where aT/ax and aT/at  are evaluated a t  x = b, the integral in the arclength s is taken 
along the body surface and ICI is the amplitude of the radiated wave of frequency 

For the source-and-plate model, the edge condition (2.8) is to be applied at x = 0, 
and the normal velocity condition ( 2 . 5 )  is now u = 0 on the plate, so that u vanishes 
on x = 0 for all negative values of y and the depth of the bottom of the plate is 
irrelevant. There is a source of strength -2b sinut a t  x = 0, y = - d ,  which has the 
same displacement effect as that of a body of width 26. The energy-flux balance 
produces the same integrals as before (2.10) and (2.11), except that the derivatives 
of 7 are now to be evaluated a t  x = 0 and the integral along the body surface is now 
an integral round a semicircle of small radius centred a t  the source. 

u. 

3. Semicircular cylinder without hysteresis 
For a cylinder whose submerged portion has a semicircular cross-section, 

D(x)  = ( b 2 4 ) + .  (3.1) 

We can work in terms of the pressure, which is a harmonic function, and a solution 
that satisfies the normal velocity condition (2.5) is given by the real part of 

Y p ,  = ub2 exp ( i d )  ____ 
( x2 + y2) . (3.2) 
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If we write p = p ,  + q  exp ( i d ) ,  we then have to seek the harmonic function q(x, y), 
which is to be an even function of x and to  have zero normal derivative on the 
semicircle. If we define two functions f ( x )  and g(x) for x > b by 

the free-surface conditions (2.6) satisfied by 7 exp ( i r t )  take the forms 

and r-K--=g( d27 x). 
dx2 (3.5) 

This equation can be solved for 7 subject to the condition that 7 be bounded a t  
infinity, and when we equate this value of 7 to that given by (3.4) we obtain the 
equation 

!&-; fi exp (-K-~~x,-xl)g(x,)dx,-AK~exp {--K-i(x-b)) = -+-- b2 f(x) (3.6) 

where A is an arbitrary constant. The edge condition (2.8) with a = 0 can then be 
written in the form 

V X Z  cr2  ' 

where 
00 

B = A+iK- i  [ exp{K-~(b-x,)}g(x,)dx,; 

(3.7) 

J b  

B is the value of dvldx a t  x = b. 

do this, we map the region occupied by the fluid into the lower half-plane by 
The solution can be obtained if we can find a relation connecting f(x) and g(x). To 

b2 
X + i Y  = x+iy+--- 

(x + iy) ' (3.9) 

so that  the semicircle becomes Y = 0, 1x1 < 2b and the free surface is Y = 0, 
1x1 > 2b. If p(x, y) = P ( X ,  Y), a source distribution along Y = 0 gives the equation 

(3.10) 

since aP/aY vanishes on Y = 0 for 1x1 < 2b and P is an even function of X. Reverting 
to the original coordinates, we can write this equation in the form 

(3.11) 

We have to solve the pair of integral equations (3.6) and (3.11) and the edge 
condition (3.7) to determine f ,  g and B or A .  An alternative form for (3.7) can be 
found if we use (3.4) to determine B. Instead of (3.7), we have the condition 

f(b)+2u = -ih i"b"' i). (3.12) 
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FIGURE 1.  Wave amplitude for an oscillating horizontal cylinder. The contact line is fixed on 
the cylinder. 

For large values of x, we have outgoing waves of amplitude C if 

7 N Cexp{-i(x-b)} 

and the asymptotic value of q is given by 

q N g2C exp(y-i(x-b)}. (3.13) 

When the corresponding asymptotic values off and g are subtracted, the remainders 
are to be o(1) a t  infinity, a condition that eliminates any incoming wave. 

The calculation of the remaining parts off and g and of the constants B and C was 
done by using a finite-difference approximation to reduce the integral equations to 
two sets of linear algebraic equations. The pair of integral equations could be reduced 
analytically to a single equation, but it is very complicated and of no computational 
advantage. Some care had to be exercised to deal adequately with the truncation of 
the infinite integrals and with the logarithmic kernel in (3.11). An analytical 
evaluation was used for the integral in (3.6) from the last mesh point to infinity. 
Integration by parts was used to overcome the corresponding difficulty of an infinite 
range of the integral in (3.11). The singularity of the kernel in (3.11) at x1 = x was 
allowed for by an exact integration across the singularity, assuming a linear 
variation of f (xJ  there. Fuller details of the numerical method employed can be 
found in Hocking (1987c), in which a similar pair of integral equations had to be 
solved. 

Some results of these calculations are shown in figures 1 and 2. In figure 1 the 
amplitude of the outgoing wave is plotted as a function of the radius of the body for 
three values of K and for a fixed contact line. This is an important special case, since 
it occurs when there is large hysteresis present. Forb = 0, it is the edge condition only 
that produces waves, while for other values of b the displacement effect is also 
present. Since the edge effect does not depend directly on b, the figure shows that the 
displacement effect is of the same order of magnitude. Figure 2 displays the supplied 
and radiated energies as functions of A, for three values of K and of 6. The dissipated 
energy is represented by the gap between the two curves. The energy supplied 
decreases monotonically as h increases, since less energy is needed to oscillate the 



Capillary-gravity waves produced by a heaving body 

0.01 0.1 1 10 
h 

6 i 

X =  10 
- -  _. -.. - _  

10 i 
X =  10 

- -  _. -.. - _  

10 i 

343 

FIGURE 2. Input and radiated energies for a horizontal cylinder. The distance between the 
curves represents the dissipated energy. (a )  b = 0.1, ( 6 )  1.0, (c) 10.0. 
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body when the contact line can slip on the body surface than when it is fixed there. 
The curves for different values of b are similar to each other in shape, but the 
magnitudes of the energies increase with b. 

The calculations of Ursell (1949) for pure gravity waves predated the development 
of computers. His method was to expand the potential as a series of functions that 
satisfied the free-surface condition and to apply collocation on the cylinder to satisfy 
the boundary condition there. A severely truncated series was used and the 
coe6cients were determined by a least-squares estimate. His results, in the present 
notation, correspond to K = 0, h = co, 0 < b < 5 .  It is not clear whether Ursell's 
method could be adapted to the capillary-gravity wave problem because of the 
changed form of the free-surface condition. On the other hand, the results for zero 
surface tension (K = 0) cannot be obtained by the method used in this paper, since 
zero K is a singular limit of the equations. However, the free-surface condition (3.5) 
suggests that, for small K ,  the wave amplitude should have a factor (1 -cKi) for some 
constant c (possibly depending on the value of 6) .  The smallest value of K used in the 
present calculations is K = 0.1, and if the ratio of the results to those of Ursell is 
calculated, the constant c turns out, to have a value of very nearly 0.6 for all the 
values of b tested. 

4. Source and plate, without hysteresis 
For a plate lying along x = 0 and a source of strength - 2b sin vt a t  (0, -d ) ,  the 

solution can be found more simply than for a cylinder since no mapping of the fluid 
region is required. The analysis follows lines very similar to those used in Hocking 
(1987b). The pressure can be written as the real part of p exp ( id)  and, as in $3,  we 
can write p = p ,  + q ,  where 

p ,  = $bgx-l[log (x2  + (y + d ) 2 }  - log (2 + (y - d)')] (4.1) 

and (4.2) 

The chosen value of p ,  accounts for the source a t  (0, - d )  and an image source a t  
(0, d) ,  and a cosine transform for q can be used since q is an even function of x. 

q = J: P(k)  cos kx exp (ky) dk. 

The free-surface conditions (2.6) become 

Following the procedure explained in Hocking (1978 b), we find that 

2u{aKB+b(l+Kk2)e-"} 
p = -  +(r2C&(k- I) ,  

~ { k ( l  +Kk2)-u2}  

(4.3) 

(4.4) 

(4.5) 

where B is the slope of the free surface a t  the contact line and C is a constant. The 
asymptotic value of 7 as x+ co then shows that 

(4.6) 7 - C exp (-ix), 
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so that we have an outgoing wave of amplitude C, provided that 

2i(KB + gb exp ( - d ) }  
1 +3K 

C =  (4.7) 

The value of 7 at the contact line can be found by setting x = 0 in (4.3) and the edge 
condition then determines the value of B and hence of C. The result is that 

1 + 3K - 2cr2~-1 b(J, - 
B =  

2an-l KJ,  - i{h( 1 + 3K) + 2vK} ' 
where 

dk 
(1 +3K) k 

(k-1)(Kk2+Kk+Kf1)  

K + 1  3K+2 tan-' ( T) 3K+4 ; , 
= 

Kf(3K + 4); 

dk 
(1 + 3K) ePkd 

J 2  = IOm (k- 1 )  (Kk2+Kk+K+ 1) 

= -e-dEi(d) - lorn K ~ ~ ~ ~ ~ ~ +  dk. 

The exponential integral is defined by 
00 ^ln 

Ei(d) = r + l o g d +  CI 5, 
n-l n n ! 

where r is Euler's constant. 

(4.9) 

(4.10) 

(4.11) 

The amplitude of the wave is given by (4.7) and the values of the energies can be 
found from (2.10)-(2.12). I n  terms of B, and B,, the real and imaginary parts of B, 
which can be calculated from (4.8), we find that 

ICI = 2K( 1 + 3K)-' { (B, + d K - l  e-d)2 +Biz}+, 

E ,  = $( 1 + 3K) (CI2, 

(4.12) 

(4.13) 

(4.14) 

Es = E ,  + ED. (4.15) 

The calculation of these quantities is easily performed, since only a quadrature is 
required. There are four parameters, A,  K, b and d ,  and these are too many to permit 
more than a very incomplete presentation of the results. Since the model was 
proposed as a replacement for more general body shapes, the results presented are 
those that enable a comparison to be made with those for the semicircular cylinder. 
It is expected and confirmed that appropriate values of the depth of the source, d ,  
are roughly comparable with the radius of the semicircle. Figures 3 and 4 are for 
d = b and show the quantities corresponding to those presented in figures 1 and 

A comparison of figures 1 and 3 indicates a similar dependence of the two sets of 
results on K and b, except that for K = 0.1 the wave amplitude shows a more rapid 
decrease from its peak value as b is increased for the source and plate than for the 
cylinder. The curves in figures 2 ( b )  and 4 are nearly identical, showing that the 

2 (b) .  
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FIGURE 3. Wave amplitude for a source and plate, with fixed contact line: 6 = d = 1. 

0.01 0. i 10 100 

FIGURE 4. Input and radiated energies for a source and plate : 6 = d = 1. 

results in the two cases are qualitatively similar (note the different scales of the 
ordinates). This correspondence between the two sets of results provides evidence of 
the value of the source-and-plate model as a simple replacement for bodies of general 
shapes when their heaving motion is to be investigated. Consequently, we can now 
proceed, with this justification, to examine the simple model with hysteresis of the 
contact angle included. 

5. Source and plate, with hysteresis 
When hysteresis is included, the changing boundary condition a t  the edge during 

the course of the motion prevents the solution from being sinusoidal. An appropriate 
procedure is to take a Laplace transform of the solution, starting from rest. With a 
similar notation to that used in $4, we obtain, instead of (4.5), the result that 

- 2b m (1 +Kk2)e-kd 2K S B  +- (5.1) n s 2 + a 2 8 2 + k ( l + K k 2 )  x sZ+k( l+KkZ) ’  
p = --___ 
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where the overbar denotes the Laplace transform and s is the parameter of the 
transform. The value of 7 at the contact line can then be calculated and the edge 
condition (2.8), after inverting the transforms, gives an integrtil equation for B(t), the 
slope of the free surface a t  the contact line. This equation can be written in the 
form 

(5 .2)  

h(B(t)-a} for B > a,  
for (BI < a, 

h(B(t)  + a} for B < -a, 
F(7)  B'(t - r )  dr - sin vt + 2bon-'H(t) = -s: 

where dk, 

dk, 
ff 

H ( t )  = __ + 3K J ,  sin ot - 

(5.3) 

(5.4) 

and w2 = k( 1 +Kk2) .  (5.5) 

For large t, the asymptotic value of H can be found by standard methods, and we 
find that 

cT(sin at J,- xe-d cos ot) 
1+3K 

+ o(t-31, H(t) - 
where J ,  has already been defined in (4.10). Since the transient behaviour of the 
solution started from rest is of no interest, and we require the ultimate periodic 
behaviour, we can replace N ( t )  in (5.2) with its asymptotic value. The integral 
equation (5.2) is identical with that solved in Hocking (1987b) for the vertically 
oscillating plate, except for the presence of the term involving H ( t ) ,  which thus 
represents the contribution made by the source to the solution. Since the integral 
equation has an evolutionary character, the value of B(t) can be determined from its 
values a t  preceding time-steps. More details of the numerical scheme can be found 
in Hocking (1987b). 

The amplitude of the outgoing wave and the values of the radiated and dissipated 
energies over one period can be calculated when the periodic solution has been 
attained. The values of these quantities are given by the same equations as before, 
except that the quantities B, and Bi in (4.12)-(4.14) are now given by the 
equations 

B, = FIT-' B cos ot dt, Bi = an-l B sin ot dt, (5.7) s s 
where the integrals are taken over one period. 

Since there are now five parameters in the problem, the results to be presented are 
limited to the special case in which d = b = 1. Figure 5 shows how the fraction of 
energy dissipated varies with the hysteresis angle, for three values of h and for three 
values of K .  As a is increased, the amount of energy dissipated decreases until it 
disappears a t  a critical value of a. The contact line then remains fixed relative to the 
plate with no energy dissipation. The motion in this case has already been given in 
$4, since setting h = 0 there is equivalent to fixing the position of the contact line. 
Figure 5 shows that there is a minor exception to the monotonic decrease of E,/E,; 
in some cases, there is an initial increase in dissipation for small values of a. This 
increase was also encountered by Young & Davis (1987) and Hocking (1987 b )  in their 
studies of the vertically oscillating plate. It is probably produced by a phase shift 
between the two factors in the energy-dissipation integral (2.11). 

12 FLM I86 
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6. Conclusions 
One conclusion to be drawn from the results presented here is that the source-and- 

plate model provides an adequate replacement for a general body in the study of its 
heaving motion. Although not quantitatively accurate, it enables the main trends in 
the parameter dependence of the motion to be identified, and it probably provides 
a t  least order-of-magnitude estimates for such quantities as the amplitude of the 
radiated wave and the energy dissipation. 

The condition applied at  the contact line has a great influence on the amplitude of 
the radiated capillary-gravity wave. For a fixed contact line, or large contact-angle 
hysteresis, there is no dissipation of energy and the forced motion of the contact line 
as the body moves up and down and the displacement of fluid by the body contribute 
comparable amounts to the wave amplitude. The edge effect dominate when the 
width of the body is small and when the source is very deep, since the displacement 
effect is then very much reduced. Even when the body is large, the wave owes a 
considerable part of its amplitude to the conditions a t  the edge. Large values of the 
non-dimensional quantity b imply that the wavelength is small compared with the 
body width, or, for a body of fixed size, that the heaving motion has a long 
period. 

When the contact line can slip along the body surface ( A  =i= 0 ) ,  energy is dissipated 
a t  the edge. For the vertically oscillating plate, this dissipation can be as large as 
90 Yo of the energy input (Hocking 1987 b) .  For the oscillating bodies studied here this 
dissipation is relatively less important. The displacement effect is largely unaffected 
by the conditions at  the edge and energy has to be introduced into the system to 
maintain the motion. The presence of contact-angle hysteresis induces a general 
decrease in the amount of energy dissipated, with a complete elimination of 
dissipation via the contact line when the amount of hysteresis is sufficient to prevent 
the contact line moving relative to the body. 

The preparation of this paper was completed during a visit to Northwestern 
University and was supported by a grant from the National Science Foundation, 
Fluid Mechanics Program, to Professor S. H. Davis, grant no. MSM-8309520. 
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